Vollmer, W., Blanot, D. & De, M. A. Pedro, Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).
Google Scholar
Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008).
Google Scholar
Irazoki, O., Hernandez, S. B. & Cava, F. Peptidoglycan muropeptides: Release, perception, and functions as signaling molecules. Front. Microbiol. 10, 500 (2019).
Park, J. T. & Uehara, T. How Bacteria Consume Their Own Exoskeletons (Turnover and Recycling of Cell Wall Peptidoglycan). Microbiol. Mol. Biol. Rev. 72, 211–227 (2008).
Google Scholar
Jacobs, C., Huang, L. J., Bartowsky, E., Normark, S. & Park, J. T. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction. EMBO J. 13, 4684–4694 (1994).
Google Scholar
Jacobs, C. et al. AmpD, essential for both β‐lactamase regulation and cell wall recycling, is a novel cytosolic N‐acetylmuramyl‐L‐alanine amidase. Mol. Microbiol. 15, 553–559 (1995).
Google Scholar
Cheng, Q., Li, H., Merdek, K. & Park, J. T. Molecular Characterization of the β-N-Acetylglucosaminidase of Escherichia coli and Its Role in Cell Wall Recycling. J. Bacteriol. 182, 4836–4840 (2000).
Google Scholar
Vötsch, W. & Templin, M. F. Characterization of a β-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and β-lactamase induction. J. Biol. Chem. 275, 39032–39038 (2000).
Google Scholar
Templin, M. F., Ursinus, A. & Höltje, J. V. A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J. 18, 4108–4117 (1999).
Google Scholar
Gisin, J., Schneider, A., Nägele, B., Borisova, M. & Mayer, C. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat. Chem. Biol. 9, 491–493 (2013).
Google Scholar
Borisova, M., Gisin, J. & Mayer, C. The N-Acetylmuramic Acid 6-Phosphate Phosphatase MupP Completes the Pseudomonas Peptidoglycan Recycling Pathway Leading to Intrinsic Fosfomycin Resistance. mBio 8, e00092–17 (2017).
Google Scholar
Fumeaux, C. & Bernhardt, T. G. Identification of MupP as a new peptidoglycan recycling factor and antibiotic resistance determinant in Pseudomonas aeruginosa. mBio 8, e00102–17 (2017).
Google Scholar
Mengin-Lecreulx, D., Van Heijenoort, J. & Park, J. T. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl- γ-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J. Bacteriol. 178, 5347–5352 (1996).
Google Scholar
Goodell, E. W. Recycling of murein by Escherichia coli. J. Bacteriol. 163, 305–310 (1985).
Google Scholar
Goodell, E. & Schwarz, U. Release of Cell Wall Peptides into Culture Medium by Exponentially Growing Escherichia coli. J. Bacteriol. 162, 391–397 (1985).
Google Scholar
Hernández, S. B., Dörr, T., Waldor, M. K. & Cava, F. Modulation of Peptidoglycan Synthesis by Recycled Cell Wall Tetrapeptides. Cell Rep. 31, 107578 (2020).
Aliashkevich, A. & Cava, F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J. 289, 4718–4730 (2021).
Kahan, F. M., Kahan, J. S., Cassidy, P. J. & Kropp, H. The Mechanism of Action of Fosfomycin (Phosphonomycin). Ann. N. Y. Acad. Sci. 235, 364–386 (1974).
Google Scholar
Seweryn, P. et al. Structural insights into the bacterial carbon-phosphorus lyase machinery. Nature 525, 68–72 (2015).
Google Scholar
White, A. K. & Metcalf, W. W. Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol. 61, 379–400 (2007).
Google Scholar
McGrath, J. W., Hammerschmidt, F. & Quinn, J. P. Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl. Environ. Microbiol. 64, 356–358 (1998).
Google Scholar
Novikova, M. et al. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J. Bacteriol. 189, 8361–8365 (2007).
Google Scholar
Nicoud, Q. et al. Sinorhizobium meliloti Functions Required for Resistance to Antimicrobial NCR Peptides and Bacteroid Differentiation. mBio 12, e00895–21 (2021).
Google Scholar
Cheng, Q. & Park, J. T. Substrate Specificity of the AmpG Permease Required for Recycling of Cell Wall Anhydro-Muropeptides. J. Bacteriol. 184, 6434–6436 (2002).
Google Scholar
Figueroa-Cuilan, W. M. et al. Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens. Appl. Environ. Microbiol. 88, e00333–22 (2022).
Jacobs, C., Frère, J.-M. & Normark, S. Cytosolic Intermediates for Cell Wall Biosynthesis and Degradation Control Inducible β-Lactam Resistance in Gram-Negative Bacteria. Cell 88, 823–832 (1997).
Google Scholar
Grangeon, R., Zupan, J. R., Anderson-Furgeson, J. & Zambryski, P. C. PopZ identifies the new pole, and PodJ identifies the old pole during polar growth in Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA 112, 11666–11671 (2015).
Google Scholar
Robalino-Espinosa, J. S., Zupan, J. R., Chavez-Arroyo, A. & Zambryski, P. Segregation of four Agrobacterium tumefaciens replicons during polar growth: PopZ and PodJ control segregation of essential replicons. Proc. Natl Acad. Sci. USA 117, 26366–26373 (2020).
Google Scholar
Anderson-Furgeson, J. C., Zupan, J. R., Grangeon, R. & Zambryski, P. C. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division. J. Bacteriol. 198, 1883–1891 (2016).
Google Scholar
Goley, E. D., Dye, N. A., Werner, J. N., Gitai, Z. & Shapiro, L. Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter. Mol. Cell 39, 975–987 (2010).
Google Scholar
Meier, E. L., Razavi, S., Inoue, T. & Goley, E. D. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus. Mol. Microbiol. 101, 265–280 (2016).
Google Scholar
Perry, E. K. & Newman, D. K. The transcription factors ActR and SoxR differentially affect the phenazine tolerance of Agrobacterium tumefaciens. Mol. Microbiol. 112, 199–218 (2019).
Google Scholar
Muth, T. et al. JDet: Interactive calculation and visualization of function-related conservation patterns in multiple sequence alignments and structures. Bioinformatics 28, 584–586 (2012).
Google Scholar
Boneca, I. G. The role of peptidoglycan in pathogenesis. Curr. Opin. Microbiol. 8, 46–53 (2005).
Google Scholar
Schaub, R. E. & Dillard, J. P. The Pathogenic Neisseria Use a Streamlined Set of Peptidoglycan Degradation Proteins for Peptidoglycan Remodeling, Recycling, and Toxic Fragment Release. Front. Microbiol. 10, 73 (2019).
Rosenthal, R. S., Nogami, W., Cookson, B. T., Goldman, W. E. & Folkening, W. J. Major fragment of soluble peptidoglycan released from growing Bordetella pertussis is tracheal cytotoxin. Infect. Immun. 55, 2117–2120 (1987).
Google Scholar
Mattoo, S. & Cherry, J. D. Molecular Pathogenesis, Epidemiology, and Clinical Manifestations of Respiratory Infections Due to Bordetella pertussis and Other Bordetella Subspecies. Clin. Microbiol. Rev. 18, 326–382 (2005).
Google Scholar
Dai, Y. et al. A New Class of Cell Wall-Recycling L,D-Carboxypeptidase Determines β-Lactam Susceptibility and Morphogenesis in Acinetobacter baumannii. mBio 12, e0278621 (2021).
Google Scholar
Simpson, B. W. et al. Acinetobacter baumannii Can Survive with an Outer Membrane Lacking Lipooligosaccharide Due to Structural Support from Elongasome Peptidoglycan Synthesis. mBio 12, e0309921 (2021).
Google Scholar
Brown, P. J. B. et al. Polar growth in the Alphaproteobacterial order Rhizobiales. Proc. Natl Acad. Sci. USA 109, 1697–1701 (2012).
Google Scholar
Krol, E. et al. Tol-Pal System and Rgs Proteins Interact to Promote Unipolar Growth and Cell Division in Sinorhizobium meliloti. mBio 11, e00306–e00320 (2020).
Google Scholar
Abrudan, M. I. et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc. Natl Acad. Sci. USA 112, 11054–11059 (2015).
Google Scholar
Kuru, E. et al. In Situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent D-Amino Acids. Angew. Chem. Int. Ed. 51, 12519–12523 (2012).
Google Scholar
Weaver, A. I. et al. Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall turnover products. Elife 11, e73178 (2022).
Google Scholar
Breedveld, M. W. & Miller, K. J. Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol. Rev. 58, 145–161 (1994).
Google Scholar
Giacomucci, S., Alvarez, L., Rodrigues, C. D. A., Cava, F. & Paradis-Bleau, C. Hydroxyl Radical Overproduction in the Envelope: an Achilles’ Heel in Peptidoglycan Synthesis. Microbiol. Spectr. 10, e0120321 (2022).
Google Scholar
Arnold, M. F. F. et al. Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides. mBio 8, e01060–17 (2017).
Google Scholar
Mauchline, T. H. et al. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc. Natl Acad. Sci. 103, 17933–17938 (2006).
Google Scholar
Young, J. P. W. et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 7, R34 (2006).
Google Scholar
Prell, J. et al. The PTSNtr system globally regulates ATP-dependent transporters in Rhizobium leguminosarum. Mol. Microbiol. 84, 117–129 (2012).
Google Scholar
Untiet, V. et al. ABC transport is inactivated by the PTS(Ntr) under potassium limitation in Rhizobium leguminosarum 3841. PLoS ONE 8, e64682 (2013).
Google Scholar
Mulley, G. et al. Mutation of GOGAT prevents pea bacteroid formation and N2 fixation by globally downregulating transport of organic nitrogen sources. Mol. Microbiol. 80, 149–167 (2011).
Google Scholar
Cheng, G., Karunakaran, R., East, A. K., Munoz-Azcarate, O. & Poole, P. S. Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation. FEMS Microbiol. Lett. 364, fnx045 (2017).
Hartl, J. et al. Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat. Metab. 2, 153–166 (2020).
Google Scholar
Morton, E. R. & Fuqua, C. Laboratory Maintenance of Agrobacterium. Curr. Protoc. Microbiol. 24, 3D.1.1–3D.1.6 (2012).
Google Scholar
Morton, E. R. & Fuqua, C. Genetic manipulation of Agrobacterium. Curr. Protoc. Microbiol. 25, 3D.2.1–3D.2.15 (2012).
Alvarez, L., Hernandez, S. B., De Pedro, M. A. & Cava, F. Ultra-Sensitive, High-Resolution Liquid Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall Chemistry and Structure. Methods Mol Biol. 1440, 11–27 (2016).
Cava, F., De Pedro, M. A., Lam, H., Davis, B. M. & Waldor, M. K. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J. 30, 3442–3453 (2011).
Google Scholar
Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).
Google Scholar
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
Google Scholar
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Google Scholar
Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
Google Scholar
Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).
Google Scholar
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Google Scholar
Chao, M. C. et al. High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res. 41, 9033–9048 (2013).
Google Scholar
Chiang, S. L. & Rubin, E. J. Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296, 179–185 (2002).
Google Scholar
Pritchard, J. R. et al. ARTIST: High-Resolution Genome-Wide Assessment of Fitness Using Transposon-Insertion Sequencing. PLoS Genet. 10, e1004782 (2014).