Peptidoglycan recycling mediated by an ABC transporter in the plant pathogen Agrobacterium tumefaciens

Peptidoglycan recycling mediated by an ABC transporter in the plant pathogen Agrobacterium tumefaciens

  • Vollmer, W., Blanot, D. & De, M. A. Pedro, Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article 
    CAS 

    Google Scholar 

  • Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008).

    Article 
    CAS 

    Google Scholar 

  • Irazoki, O., Hernandez, S. B. & Cava, F. Peptidoglycan muropeptides: Release, perception, and functions as signaling molecules. Front. Microbiol. 10, 500 (2019).

  • Park, J. T. & Uehara, T. How Bacteria Consume Their Own Exoskeletons (Turnover and Recycling of Cell Wall Peptidoglycan). Microbiol. Mol. Biol. Rev. 72, 211–227 (2008).

    Article 
    CAS 

    Google Scholar 

  • Jacobs, C., Huang, L. J., Bartowsky, E., Normark, S. & Park, J. T. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction. EMBO J. 13, 4684–4694 (1994).

    Article 
    CAS 

    Google Scholar 

  • Jacobs, C. et al. AmpD, essential for both β‐lactamase regulation and cell wall recycling, is a novel cytosolic N‐acetylmuramyl‐L‐alanine amidase. Mol. Microbiol. 15, 553–559 (1995).

    Article 
    CAS 

    Google Scholar 

  • Cheng, Q., Li, H., Merdek, K. & Park, J. T. Molecular Characterization of the β-N-Acetylglucosaminidase of Escherichia coli and Its Role in Cell Wall Recycling. J. Bacteriol. 182, 4836–4840 (2000).

    Article 
    CAS 

    Google Scholar 

  • Vötsch, W. & Templin, M. F. Characterization of a β-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and β-lactamase induction. J. Biol. Chem. 275, 39032–39038 (2000).

    Article 

    Google Scholar 

  • Templin, M. F., Ursinus, A. & Höltje, J. V. A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J. 18, 4108–4117 (1999).

    Article 
    CAS 

    Google Scholar 

  • Gisin, J., Schneider, A., Nägele, B., Borisova, M. & Mayer, C. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat. Chem. Biol. 9, 491–493 (2013).

    Article 
    CAS 

    Google Scholar 

  • Borisova, M., Gisin, J. & Mayer, C. The N-Acetylmuramic Acid 6-Phosphate Phosphatase MupP Completes the Pseudomonas Peptidoglycan Recycling Pathway Leading to Intrinsic Fosfomycin Resistance. mBio 8, e00092–17 (2017).

    Article 
    CAS 

    Google Scholar 

  • Fumeaux, C. & Bernhardt, T. G. Identification of MupP as a new peptidoglycan recycling factor and antibiotic resistance determinant in Pseudomonas aeruginosa. mBio 8, e00102–17 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mengin-Lecreulx, D., Van Heijenoort, J. & Park, J. T. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl- γ-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J. Bacteriol. 178, 5347–5352 (1996).

    Article 
    CAS 

    Google Scholar 

  • Goodell, E. W. Recycling of murein by Escherichia coli. J. Bacteriol. 163, 305–310 (1985).

    Article 
    CAS 

    Google Scholar 

  • Goodell, E. & Schwarz, U. Release of Cell Wall Peptides into Culture Medium by Exponentially Growing Escherichia coli. J. Bacteriol. 162, 391–397 (1985).

    Article 
    CAS 

    Google Scholar 

  • Hernández, S. B., Dörr, T., Waldor, M. K. & Cava, F. Modulation of Peptidoglycan Synthesis by Recycled Cell Wall Tetrapeptides. Cell Rep. 31, 107578 (2020).

  • Aliashkevich, A. & Cava, F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J. 289, 4718–4730 (2021).

  • Kahan, F. M., Kahan, J. S., Cassidy, P. J. & Kropp, H. The Mechanism of Action of Fosfomycin (Phosphonomycin). Ann. N. Y. Acad. Sci. 235, 364–386 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Seweryn, P. et al. Structural insights into the bacterial carbon-phosphorus lyase machinery. Nature 525, 68–72 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • White, A. K. & Metcalf, W. W. Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol. 61, 379–400 (2007).

    Article 
    CAS 

    Google Scholar 

  • McGrath, J. W., Hammerschmidt, F. & Quinn, J. P. Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl. Environ. Microbiol. 64, 356–358 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Novikova, M. et al. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J. Bacteriol. 189, 8361–8365 (2007).

    Article 
    CAS 

    Google Scholar 

  • Nicoud, Q. et al. Sinorhizobium meliloti Functions Required for Resistance to Antimicrobial NCR Peptides and Bacteroid Differentiation. mBio 12, e00895–21 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cheng, Q. & Park, J. T. Substrate Specificity of the AmpG Permease Required for Recycling of Cell Wall Anhydro-Muropeptides. J. Bacteriol. 184, 6434–6436 (2002).

    Article 
    CAS 

    Google Scholar 

  • Figueroa-Cuilan, W. M. et al. Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens. Appl. Environ. Microbiol. 88, e00333–22 (2022).

  • Jacobs, C., Frère, J.-M. & Normark, S. Cytosolic Intermediates for Cell Wall Biosynthesis and Degradation Control Inducible β-Lactam Resistance in Gram-Negative Bacteria. Cell 88, 823–832 (1997).

    Article 
    CAS 

    Google Scholar 

  • Grangeon, R., Zupan, J. R., Anderson-Furgeson, J. & Zambryski, P. C. PopZ identifies the new pole, and PodJ identifies the old pole during polar growth in Agrobacterium tumefaciens. Proc. Natl Acad. Sci. USA 112, 11666–11671 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Robalino-Espinosa, J. S., Zupan, J. R., Chavez-Arroyo, A. & Zambryski, P. Segregation of four Agrobacterium tumefaciens replicons during polar growth: PopZ and PodJ control segregation of essential replicons. Proc. Natl Acad. Sci. USA 117, 26366–26373 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Anderson-Furgeson, J. C., Zupan, J. R., Grangeon, R. & Zambryski, P. C. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division. J. Bacteriol. 198, 1883–1891 (2016).

    Article 
    CAS 

    Google Scholar 

  • Goley, E. D., Dye, N. A., Werner, J. N., Gitai, Z. & Shapiro, L. Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter. Mol. Cell 39, 975–987 (2010).

    Article 
    CAS 

    Google Scholar 

  • Meier, E. L., Razavi, S., Inoue, T. & Goley, E. D. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus. Mol. Microbiol. 101, 265–280 (2016).

    Article 
    CAS 

    Google Scholar 

  • Perry, E. K. & Newman, D. K. The transcription factors ActR and SoxR differentially affect the phenazine tolerance of Agrobacterium tumefaciens. Mol. Microbiol. 112, 199–218 (2019).

    Article 
    CAS 

    Google Scholar 

  • Muth, T. et al. JDet: Interactive calculation and visualization of function-related conservation patterns in multiple sequence alignments and structures. Bioinformatics 28, 584–586 (2012).

    Article 
    CAS 

    Google Scholar 

  • Boneca, I. G. The role of peptidoglycan in pathogenesis. Curr. Opin. Microbiol. 8, 46–53 (2005).

    Article 
    CAS 

    Google Scholar 

  • Schaub, R. E. & Dillard, J. P. The Pathogenic Neisseria Use a Streamlined Set of Peptidoglycan Degradation Proteins for Peptidoglycan Remodeling, Recycling, and Toxic Fragment Release. Front. Microbiol. 10, 73 (2019).

  • Rosenthal, R. S., Nogami, W., Cookson, B. T., Goldman, W. E. & Folkening, W. J. Major fragment of soluble peptidoglycan released from growing Bordetella pertussis is tracheal cytotoxin. Infect. Immun. 55, 2117–2120 (1987).

    Article 
    CAS 

    Google Scholar 

  • Mattoo, S. & Cherry, J. D. Molecular Pathogenesis, Epidemiology, and Clinical Manifestations of Respiratory Infections Due to Bordetella pertussis and Other Bordetella Subspecies. Clin. Microbiol. Rev. 18, 326–382 (2005).

    Article 
    CAS 

    Google Scholar 

  • Dai, Y. et al. A New Class of Cell Wall-Recycling L,D-Carboxypeptidase Determines β-Lactam Susceptibility and Morphogenesis in Acinetobacter baumannii. mBio 12, e0278621 (2021).

    Article 

    Google Scholar 

  • Simpson, B. W. et al. Acinetobacter baumannii Can Survive with an Outer Membrane Lacking Lipooligosaccharide Due to Structural Support from Elongasome Peptidoglycan Synthesis. mBio 12, e0309921 (2021).

    Article 

    Google Scholar 

  • Brown, P. J. B. et al. Polar growth in the Alphaproteobacterial order Rhizobiales. Proc. Natl Acad. Sci. USA 109, 1697–1701 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Krol, E. et al. Tol-Pal System and Rgs Proteins Interact to Promote Unipolar Growth and Cell Division in Sinorhizobium meliloti. mBio 11, e00306–e00320 (2020).

    Article 

    Google Scholar 

  • Abrudan, M. I. et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc. Natl Acad. Sci. USA 112, 11054–11059 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kuru, E. et al. In Situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent D-Amino Acids. Angew. Chem. Int. Ed. 51, 12519–12523 (2012).

    Article 
    CAS 

    Google Scholar 

  • Weaver, A. I. et al. Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall turnover products. Elife 11, e73178 (2022).

    Article 
    CAS 

    Google Scholar 

  • Breedveld, M. W. & Miller, K. J. Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol. Rev. 58, 145–161 (1994).

    Article 
    CAS 

    Google Scholar 

  • Giacomucci, S., Alvarez, L., Rodrigues, C. D. A., Cava, F. & Paradis-Bleau, C. Hydroxyl Radical Overproduction in the Envelope: an Achilles’ Heel in Peptidoglycan Synthesis. Microbiol. Spectr. 10, e0120321 (2022).

    Article 

    Google Scholar 

  • Arnold, M. F. F. et al. Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides. mBio 8, e01060–17 (2017).

    Article 

    Google Scholar 

  • Mauchline, T. H. et al. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc. Natl Acad. Sci. 103, 17933–17938 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Young, J. P. W. et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 7, R34 (2006).

    Article 

    Google Scholar 

  • Prell, J. et al. The PTSNtr system globally regulates ATP-dependent transporters in Rhizobium leguminosarum. Mol. Microbiol. 84, 117–129 (2012).

    Article 
    CAS 

    Google Scholar 

  • Untiet, V. et al. ABC transport is inactivated by the PTS(Ntr) under potassium limitation in Rhizobium leguminosarum 3841. PLoS ONE 8, e64682 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mulley, G. et al. Mutation of GOGAT prevents pea bacteroid formation and N2 fixation by globally downregulating transport of organic nitrogen sources. Mol. Microbiol. 80, 149–167 (2011).

    Article 
    CAS 

    Google Scholar 

  • Cheng, G., Karunakaran, R., East, A. K., Munoz-Azcarate, O. & Poole, P. S. Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation. FEMS Microbiol. Lett. 364, fnx045 (2017).

  • Hartl, J. et al. Untargeted metabolomics links glutathione to bacterial cell cycle progression. Nat. Metab. 2, 153–166 (2020).

    Article 
    CAS 

    Google Scholar 

  • Morton, E. R. & Fuqua, C. Laboratory Maintenance of Agrobacterium. Curr. Protoc. Microbiol. 24, 3D.1.1–3D.1.6 (2012).

    Article 

    Google Scholar 

  • Morton, E. R. & Fuqua, C. Genetic manipulation of Agrobacterium. Curr. Protoc. Microbiol. 25, 3D.2.1–3D.2.15 (2012).

  • Alvarez, L., Hernandez, S. B., De Pedro, M. A. & Cava, F. Ultra-Sensitive, High-Resolution Liquid Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall Chemistry and Structure. Methods Mol Biol. 1440, 11–27 (2016).

  • Cava, F., De Pedro, M. A., Lam, H., Davis, B. M. & Waldor, M. K. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J. 30, 3442–3453 (2011).

    Article 
    CAS 

    Google Scholar 

  • Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article 
    CAS 

    Google Scholar 

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article 
    CAS 

    Google Scholar 

  • Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article 
    CAS 

    Google Scholar 

  • Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).

    Article 
    CAS 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chao, M. C. et al. High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res. 41, 9033–9048 (2013).

    Article 
    CAS 

    Google Scholar 

  • Chiang, S. L. & Rubin, E. J. Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296, 179–185 (2002).

    Article 
    CAS 

    Google Scholar 

  • Pritchard, J. R. et al. ARTIST: High-Resolution Genome-Wide Assessment of Fitness Using Transposon-Insertion Sequencing. PLoS Genet. 10, e1004782 (2014).

  • Global diabetes drug shortage ‘miracle’ weight loss cure trend Previous post Global diabetes drug shortage ‘miracle’ weight loss cure trend
    UNLV Newsmakers 2022: Community | University of Nevada, Las Vegas Next post UNLV Newsmakers 2022: Community | University of Nevada, Las Vegas